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Abstract
Text data pose fundamental challenges for statistical inference due to their high dimensionality
and unstructured nature. Conventional methods based on embeddings or topic models
often oversimplify linguistic complexity without formal inferential guarantees. We propose
context augmentation, which treats LLM-generated contexts as auxiliary variables to build a
structured mapping from text to inferential targets. A clause function scores interactions
between each observed string and its contexts, and an aggregation operator summarizes
these evaluations into robust statistics. Formally, under standard support, ignorability, and
regularity conditions, we derive the limiting distribution of context-augmented estimators
and extend the framework beyond two-sample tests to regression coefficients, quantiles, and
ranks. In particular, we introduce a text-to-text regression—where both predictors and
outcomes are strings mediated by latent contexts—that separates semantic from syntactic
effects. When the target statistic is pivotal, repeated cross-fitting or bootstrap resampling
achieves higher-order accuracy, reducing the required convergence rate from n−1/4 to n−1/8.
We also supply finite-sample inequalities linking error rates to the number of contexts and
cross-fits. Empirically, we apply context augmentation to a two-sample experiment with
free-text responses and to our text-to-text regression. In replication, we recover string-
and context-level treatment effects with interpretable diagnostics, thereby anchoring LLM
outputs to classical estimands. Finally, we model structured dialogue to show how shifts in
shared understanding yield more predictable syntax across turns.
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1 Introduction

Large language models (LLMs), such as GPT (Brown et al., 2020; OpenAI, 2023) and BERT

(Devlin et al., 2019), have significantly expanded the analytical capacity of text-based research across

disciplines, including political science, law, and social sciences (Chen et al., 2024; Argyle et al., 2023).

Despite their success in classification, prediction, and content generation, the integration of LLMs

into formal statistical inference remains limited. Classical inferential methods—including hypothesis

testing, regression modeling, and probability-based estimation—face challenges with textual data

due to their high-dimensional dependencies and lack of intrinsic numeric structure (Blei et al., 2003;

Gentzkow et al., 2019). Existing approaches typically rely on fixed embeddings or summary statistics

that abstract away linguistic nuance, limiting their utility in rigorous statistical inference.

This paper introduces context augmentation, a method integrating LLM-generated contexts with

semiparametric inference, drawing upon empirical process theory (van der Vaart, 1998a; Huber and

Ronchetti, 2009) and classical data augmentation (Rubin, 1976; Tanner and Wong, 1987). Context

augmentation leverages the distributional hypothesis from linguistics (Harris, 1954; Sahlgren, 2008),

positing meaning as arising from contextual usage rather than fixed embeddings. By employing

LLMs to dynamically generate contexts around observed texts, our approach constructs auxiliary

linguistic structures that facilitate statistical estimation, maintaining textual richness without imposing

restrictive parametric assumptions.

Our approach comprises three components. First, LLMs generate contextual expansions of observed

text, conditional on experimental treatments or relevant covariates. Second, a clause function quantifies

interactions between observed text and generated contexts, capturing probabilistic dependencies

structurally. Third, an aggregation operator integrates context-specific evaluations into robust

statistical summaries. This embedding within dynamically generated linguistic environments enables

rigorous hypothesis testing, regression analyses, and dependence assessment. This formulation extends

naturally to a regression setting with text-valued predictors and outcomes, enabling inference on the

relationship between linguistic inputs and responses.

We establish conditions under which context-augmented estimators exhibit asymptotic normality

(van der Vaart, 1998a). Crucially, we explicitly characterize and eliminate self-referential bias

arising from context generation and evaluation using repeated cross-fitting (Chernozhukov et al.,

2018). Additionally, by exploiting pivotal statistics—statistics whose asymptotic distributions do not

depend on nuisance parameters—we achieve higher-order accuracy and provide new formal results
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delineating computational-statistical tradeoffs. We also provide finite-sample inequalities that clarify

how estimation error depends on the number of generated contexts and repeated cross-fits. This novel

contribution ensures valid inference despite the inherent stochasticity of LLM-generated contexts.

Unlike embedding-based or topic-modeling methods, our framework directly incorporates linguistic

variability into inference, mitigating dimensionality concerns and model dependence. To illustrate

utility, we apply context augmentation to two canonical statistical tasks: a two-sample test from

experimental data with a text outcome (Egami et al., 2022) and a regression model with textual

predictors and outcomes. We show that context augmentation detects a stronger effect than the

original topic model implementation, and offers a distinct set of insights and analyses. Our regression

application operationalizes psycholinguistic theories of interactive alignment (Pickering and Garrod,

2004, 2013), showing that a shift in shared understanding in a dialog leads to the participants adopting

a more predictable syntax.

2 Intuition Behind Context Augmentation

This section provides an intuitive overview of our approach before introducing the formal framework.

In the two-sample setting, we compare two groups of text—say, Group A and Group B. For each

observed text string, the LLM generates multiple contexts that enrich the raw text with additional

semantic detail. For example, given the string “apple,” the LLM might generate a context such

as “The tart <str> tastes great in a pie.” Such a context is clearly aligned with the food domain,

resulting in a high probability for “apple,” whereas unrelated strings like “Paris” or “scuba diving”

would receive low probabilities. Using these generated contexts, we then construct a statistic for

each string that quantifies whether it is more likely to appear under the contexts generated from

members of one group versus the other. We avoid a self-referential bias by not comparing strings

against contexts generated by that self-same string, implementing a repeated cross-fitting strategy,

where we average over leave-n/2-out subsamples. In our implementation, the string-level statistic

is a log-probabillity that compares the augmented probability of the string appearing in Group A

contexts to that in Group B contexts. We illustrate using a difference-in-means t-test, and show that

the method both properly recovers the null distribution when Group A and B are the same, but

also differentiates between Groups when they are different. Just as bootstrapping a pivotal statistic

leads to higher-order convergence, we show that repeated cross-fitting a pivotal statistic, like a t- or

F -statistic allows for a similar gains.

We also apply our framework to the regression setting, where both the predictor sx and the outcome

sy are text. Our goal is to measure whether observing sx increases the probability of subsequently
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observing sy. To capture this effect, we generate latent contexts around the observed sx; we then

treat these contexts as mediating variables that link the syntactic and semantic features of sx to

sy. To isolate the influence of sx’s content, we compare the LLM-assessed probability of sy when

paired with the informative sx against that when sx is replaced by a non-informative variant, s̃x. We

generate non-informative strings in three ways: in the masked variant, each token in sx is replaced

with a placeholder (preserving overall structure but removing specific lexical content); in the shuffled

variant, the words are randomly permuted (disrupting syntactic order while retaining the words

themselves); and in the jabberwocky variant, content words are replaced with invented nonsense words

(stripping away semantic meaning while preserving an approximate syntactic scaffold). For example,

consider the sentence “The director praised the outstanding performance.” Its shuffled variant might

be “performance the outstanding praised director the,” while its jabberwocky version could be “The

gormer flarked the slythering frimble.” By holding the generated context fixed across these variants,

we compare the LLM-assessed likelihoods of sy under the informative and non-informative versions of

sx. A regression analysis of the outcome, regressing the log-probability of sy with the informative

context, on the log-probability of sy on the non-informative predictors. This approach enables us to

decompose and quantify the contributions of semantic content, syntax, and lexical details in driving

the outcome, even when both the predictor and outcome are text.

3 Literature Review and Motivation

Existing text-based inference methods primarily utilize embedding transformations, such as word2vec

(Mikolov et al., 2013), GloVe (Pennington et al., 2014), and contextualized embeddings from models

like BERT and GPT (Devlin et al., 2019; Brown et al., 2020). These approaches typically reduce

text to fixed-length vector representations, enabling numerical analyses but often losing dynamic

contextual information intrinsic to language. Similarity metrics such as cosine similarity or dot

products lack probabilistic interpretation, limiting rigorous statistical inference.

Recent semiparametric estimation techniques address high-dimensional nuisance functions via reg-

ularization, orthogonal moment conditions, and machine learning (Chernozhukov, Fernández-Val,

and Kowalski, Chernozhukov et al.; Belloni et al., 2014; Chernozhukov et al., 2022), building upon

classical results on profiling, debiasing, and sample-splitting (Bickel, 1982; van der Vaart, 1998a;

Robins and Rotznitzky, 1995; Murphy and van der Vaart, 2000). While these approaches robustly

handle nuisance parameters, their direct application to textual data remains limited due to inherent

linguistic variability. Our contribution departs from prior work by connecting text data to classical
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estimands using LLM-generated contexts as auxiliary data, permitting inference on statistics like

means, regression coefficients, and quantiles directly from text data.

In contrast, context augmentation integrates over LLM-generated contexts, effectively marginalizing

nuisance dimensions. This aligns with integrated likelihood methods (Berger et al., 1999), traditionally

restricted to parametric settings. Our framework generalizes integrated likelihood concepts to

nonparametric, model-generated contexts, treating textual structure as a nuisance to be integrated

out rather than explicitly profiled.

Efforts to integrate causal inference and text analysis (e.g., Egami et al., 2022; Roberts et al., 2020)

commonly embed text into predefined numeric structures. Although these methods utilize split-

sample strategies to avoid overfitting, their reliance on fixed embeddings constrains representational

flexibility. Context augmentation moves beyond fixed embeddings, explicitly modeling linguistic

variability through probabilistic integration over generated contexts, thus offering richer, uncertainty-

aware modeling. Recent studies have used LLMs as black-box scoring mechanisms for prediction

or plausibility ranking, but these approaches rarely yield interpretable estimands or theoretical

guarantees.

Our approach is grounded in the distributional hypothesis (Harris, 1954; Sahlgren, 2008), which views

meaning through context. While methods like latent Dirichlet allocation (Blei et al., 2003) and static

embedding methods (e.g., Mikolov et al., 2013) provide valuable descriptive summaries of text corpora,

they do not directly yield estimators with known frequentist properties or permit hypothesis testing

without additional assumptions. Modern transformer-based architectures (BERT, GPT) advance

contextual modeling but lack direct probabilistic interpretations necessary for rigorous inference.

By treating contexts as latent auxiliary variables—akin to classical data augmentation (Rubin, 1976;

Tanner and Wong, 1987; Dempster et al., 1977)—our framework embeds texts within semantic

environments, enabling explicit probabilistic inference. Our aggregation step, robust to outliers

and heavy tails via ranks or quantiles, provides flexibility unmatched by embedding-based methods.

Context augmentation thus bridges empirical process theory (van der Vaart, 1998a; Huber and

Ronchetti, 2009; Newey, 1991; Chernozhukov et al., 2018) and NLP, addressing high-dimensional

nuisance functions systematically (Wager and Athey, 2017; Athey et al., 2019).

4 Setup and Notation

We formalize the problem using notation tailored to text-valued data, distinguishing between observed

strings, the contexts in which they are embedded, and the clause functions linking the two. Our
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Variables
s, si s: d-vector of random strings; si: ith observed string
xi Covariate vector (length p) for string si

n, nc n: number of strings; nc: contexts generated per string
E , E(k) E : set of conditioning events; E(k): kth event

Latent Contexts
c, cj;i, cE cj;i: jth context for string si; cE : contexts under event E

Parameters and Models
θ Target estimand (scalar or vector)
M̂ , M̂c M̂: scoring model; M̂c: context-generation model

Operators & Functions
Cl(s, c, E , M̂) Clause function: score of s in context c under E
Str(s, E , M̂) String-function: aggregates Cl over contexts to one statistic per string
A(·), T (·) A: aggregate over contexts; T : aggregate over strings to θ

Table 1: Key notation. Bold indicates vectors; scalar quantities in italics.

framework aggregates over contexts within each string and then across strings to the sample level, in

a manner compatible with standard tools of statistical analysis. Table 1 provides a summary before

the formal notation is introduced.

4.1 Data and Variables

We assume that the researcher observes n realizations of a d-dimensional vector-valued random

variable s, denoted {si}n
i=1, with si = (si1, si2, . . . , sid)⊤. This, along with a vector of p string-level

covariates, xi, comprises the observed data.

We will measure how the string-probability changes across a set of conditioning events E =

{E (1), . . . , E (q)}. In the two sample problem, the event is sample membership; in the regression

problem, it is presence of a predictor string. While we cannot evaluate the string-probability condi-

tional on an event, we will use the large language model (LLM) M̂c to generate event-contexts that

capture the information in the event:

cE = c | E , M̂c. (1)

where c is a q-dimensional text-valued vector, with each element corresponding to an event. We will

generate nc contexts per string, with context j generated off string si as cj;i. These event-contexts

will provide the auxiliary information connecting strings to events.

For the regression problem, we generate contexts off one set of strings, the predictor strings then

evaluate them against another, the outcome strings. In the two-sample problem, the event–sample-

membership–is operationalized by the strings in each event. A full-sample analysis, in which strings are

evaluated against contexts generated by those same strings, induces a self-referential bias (analogous to
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the “reflection problem” of Manski, 1993). We address this bias in two stages: cross-fitting eliminates

the lead bias term and pivotality the second. First, though, we turn to constructing our estimand

and estimate.

4.2 The Estimand

We construct our estimand, θ, in two steps. First, we aggregate over the context distribution to recover

a string-level object, and then over the string distribution to obtain a population-level parameter. It

will be useful at times to write this parameter as a functional of the joint distribution of strings and

contexts by event, i.e. θ
.= θ(Fs,c;E).

Our basic object is the clause function, which evaluates each element of the d-dimensional string

vector against each element of the q-dimensional context vector, and then maps each string-context

pair to a real number.

Cl(s, c, E , M̂) : Sd × Cq 7→ ℜd×q

Evaluation will be done by a scoring model, M̂, which need not coincide with the context-generation

model, M̂c. In our examples, we generate and score with the same model, where the clause function

returns the log string-probability. More generally, though, contexts can be generated off one LLM

and evaluated off another, or contexts can be generated off of an LLM and then the resulting clauses

may be scored by an auxiliary model that returns summary measures like sentiment or ideology.

In constructing θ, we first apply the clause function and aggregate over contexts with a user-specified

aggregation operator A,

Str(s, E , M̂) = A ◦ Cl(s, c, E , M̂),

returning a string-level functional. Given the high-dimensional, and possibly erratic, nature of LLMs,

this aggregation encompasses means but also robust alternatives, like medians, quantiles, ranks,

trimmed means, or other robust location statistics. We then map this string-level object to our target

parameter through the operator T , also user-specified,

θ = T ◦ Str(s, E , M̂)

The T (·) functional is also flexible, allowing for the same robust alternatives as A and smooth

transformations thereof, such as logarithms. Formally, we will allow any transformation that admits

a first-order Hadamard derivative, allowing for an asymptotic linearization.
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4.3 The Estimate

Plug-in estimates are denoted with a hat. For observation si and its associated contexts {cj;i}nc
j=1, we

construct the estimate

Ŝtr(si, E , M̂) = A ◦ {Cl(si, cj;i, E , M̂)}nc
j=1 (2)

.= Ŝtr
E
i . (3)

where we adopt the compact notation in the second line when there is no ambiguity. The estimator

for θ is then

θ̂ = T ◦ {Ŝtr
E
i }n

i=1.

The variance in θ̂ enters from two sources: the first within-string variance driven by contexts and the

second cross-string variance over the sample.

5 Identification and Estimation

We next turn to four sets of results on the identification and estimation of our target parameter, θ.

We first state a set of identification assumptions analogous to those from the literatures on missing

data and causal inference (Rubin, 1976). Second, we derive the limiting distribution of our estimator

in a way that characterizes bias induced through self-referential event-context generation. Third, we

follow standard arguments in semiparametric theory and show that a subsampling strategy eliminates

bias to first order (see, e.g. Chernozhukov et al., 2018; van der Vaart, 1998a). Finally, we provide two

extensions. In the first, we extend results on higher-order efficiency by showing that cross-fitting a

pivotal statistic can eliminate a second-order bias term—a new result in our setting (e.g., van der

Vaart, 2014; Robins et al., 2008; Li et al., 2011; Pretorius and Swanepoel, 2018). In the second, we

provide a bound balancing the rate requirement on the nuisance against the number of sampled

contexts. We show how the rate can be met through a combination of computationally-expensive

generated contexts and computationally inexpensive repeated cross-fits.

5.1 Identification

We connect strings to events using cE as auxiliary information. Under the following assumptions,

differences in θ across separate sets of event-contexts imply differences in the underlying string-

probabilities:

1. Overlap: For each event set E ,

supp(s | E) ∩ supp(cE) ̸= ∅.
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2. Weak Ignorability: For any two event sets E and E ′,

Cl(s, cE , E , M̂) = Cl(s, cE , E ′, M̂).

3. Injectivity: The mapping θ(·) = T ◦ A is injective.

Lemma (Identification). Under these assumptions,

θ(Fs,cE ; E) ̸= θ(Fs,cE′ ; E ′) ⇒ Fs|E ̸= Fs|E ′ .

Proof 1 See Appendix A.1.

Our identification assumptions adapt classic strategies utilizing latent variables and auxiliary infor-

mation to LLM-generated contexts (Tanner and Wong, 1987; Rubin, 1976; Dempster et al., 1977).

The Overlap condition is mild in this setting, since modern LLMs can generate virtually any string in

response to a prompt—so the support of contexts will cover the support of observed strings. Weak

Ignorability only requires that the clause score depend on the event’s contexts, not on extraneous

aspects of E , which is weaker than the full conditional independence in Strong Ignorability (e.g.

Rosenbaum and Rubin, 1984; Imbens and Rubin, 2015). We turn now to estimation and inference.

5.2 Estimation and Asymptotics

We present three main asymptotic results. First, we set up θ as the solution to an estimating equation

and then generate a decomposition that isolates its sources of variance. Second, we discuss two

standard ways to guarantee convergence and asymptotic unbiasedness: by a Donsker assumption or

through a split-sample approach. Third, we show that, if the target statistic is pivotal, repeated cross-

fitting generates a higher-order efficiency. Chernozhukov et al. (2018, Corollary 3.3 and subsequent

text) analyze a fixed number of cross-fits; we show that one can let the number of repeated cross-fits

grow with n and still control the error. We then balance this against the number of contexts per

string nc, needed to achieve a target estimation error rate. Rather than using plug-in corrections of

higher order bias terms in U-statistics (e.g., van der Vaart, 2014; Robins et al., 2008; Li et al., 2011),

we leverage pivotality to eliminate the leading term in an Edgeworth expansion—similar in spirit to

Hall (1992). Our closest antecedent is Pretorius and Swanepoel (2018), who eliminate the lead bias

term by using subsampled plug-in estimates in a Cornish-Fisher expansion. Our contribution extends

this result to a general, semiparametric setting with application to text-valued data.
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5.3 Setup and Influence Function Decomposition

We take as the target parameter, θ, defined above, and the nuisance the distribution of event-

conditioned contexts, η = FcE and η̂ = F̂cE . The complete data consist of observed strings and

generated contexts, {Zi}n
i=1 = {si, {cE

j;i}nc
j=1}n

i=1, with F̂cE ;i the estimated distribution of cE
j;i. The

following assumptions allow us to write θ as the solution to an estimating equation and then develop

a von Mises expansion around it:

Assumption 1 1. The string-level statistics Ŝtr
E
i are i.i.d. across observations, and the contexts

used to construct each Ŝtr
E
i are i.i.d. conditional on the string si.

2. The parameter θ ∈ ℜd solves

Φ(θ, η = η0) = E[ϕθ,η=η0(StrE
i )] = 0.

with Jacobian ∂θΦ(θ, η) invertible uniformly in a neighborhood of θ0.

3. The map ϕθ,η is Hadamard differentiable in η and pathwise (Gateaux) differentiable in θ, both

tangentially to a subset of L2(P ) that contains the closure of the image of AĊl.

4. The model is differentiable in quadratic mean in θ, uniformly in a neighborhood of (θ0, η0).

5. The process Φ̂(θ, η) = 1
n

∑n
i=1 ϕθ,η(Ŝtr

E
i;nc

) is stochastically equicontinuous uniformly in a

neighborhood of θ0.

These mirror standard assumptions in Z-estimation see, van der Vaart (e.g. 1998a, Thm. 25.57)

or Chernozhukov et al. (e.g. 2018, Sec 2.1), giving us a decomposition into three sources of error:

sampling error, context-level error, and self-referential bias.

Result 1 Under Assumption 1
√

n(θ̂ − θ0) =
√

n

{
(θ̂Str,η0 − θ0)︸ ︷︷ ︸

Sampling variation

+ (θ̂Ŝtr,η0
− θ̂Str,η0)︸ ︷︷ ︸

Context-level error

+ (θ̂Ŝtr,η̂
− θ̂Ŝtr,η0

)︸ ︷︷ ︸
Self-referential bias

}

= (∂θΦ(θ0, η0))−1 · 1√
n

n∑
i=1

{
ϕθ0,η0(StrE

i )︸ ︷︷ ︸
Sampling variance

+ ∂Strϕθ0,η0(StrE
i )

[
Ŝtr

E
i;nc

− StrE
i

]
︸ ︷︷ ︸

Context-level error

+ ∂ηϕθ0,η0(Ŝtr
E
i;nc

) ·
∥∥∥F̂cE ;i − FcE ;i

∥∥∥
∞︸ ︷︷ ︸

Self-referential bias

}
+ op(1) (4)
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Proof. See Appendix A.2.

This decomposition helps us distinguish between different directions in which the estimate may

fluctuate around the population minimizer: sample-variation, context-variation, and estimation error

on the event-context distribution. The first two influence functions can be handled through standard

parametric arguments. The third one involves a nonparametric element, which may induce a persistent

bias term.

The following assumption will guarantee a well-behaved limiting distribution:

Assumption 2 1. Each influence function in the first order decomposition satisfies a Lyapunov

condition.

2. The string and error estimate converge pointwise as ŜtrE
i

p→ StrE
i and, at each context c,

F̂cE (c) p→ FcE (c).

3. The error on the event context distribution vanishes uniformly over event-contexts and strings

as
1√
n

n∑
i=1

∂ηϕθ0,η0(Ŝtr
E
i;nc

) ·
∥∥∥F̂cE ;i − FcE ;i

∥∥∥
∞

p−→ 0

Result 2 (Limit Theorem) Under Assumptions 1 and 2,
√

n(θ̂ − θ0)⇝ N (0, Ω),

where the asymptotic variance is given by

Ω = (∂θΦ(θ0, η0))−1 · E
[
ϕθ0,η0(StrE

i )ϕθ0,η0(StrE
i )⊤

]
· (∂θΦ(θ0, η0))−1⊤ .

Proof. See Appendix A.3.

Controlling the first two influence functions is a standard parametric problem. The third term requires

a bit more care, as the nonparametric element may not achieve the parametric rate. Several strategies

here include a classical no-bias condition for asymptotic normality (van der Vaart, 1998b, Condition

25.52), constraining the complexity of the function to be in a Donsker case.

In many common machine learning cases, this Donsker assumption is provably invalid. Recent years

have found renewed interested in subsampling methods (Bickel, 1982; van der Vaart, 1998a; Politis

et al., 1999; Chernozhukov et al., 2018), where disjoint sets of data are used to estimate the nuisance

and conduct inference. Under this strategy, the rate requirement on the estimation error on the

11



Statistical Inference with LLMs

nuisance term can be reduced from op(n−1/2) to op(n−1/4), such that the Assumptions 2 can hold

under
1
n

n∑
i=1

∥∥∥F̂cE ;i − FcE ;i

∥∥∥
∞

= op(n−1/4).

Key to achieving this rate is using different subsets of the data to estimate θ̂ = F̂cE and conduct

inference on θ. In the regression problem, we do this naturally: contexts are generated off of predictor

strings, while inference is done using a distinct set of outcome strings. In the two-sample problem,

where strings are evaluated against contexts by strings in each group, we adjust for self-referential

bias using through subsampling: we split the data in equal-sized subsamples, I1, I2. We use I1

for generating contexts, I2 for inference on θ, and then cross-fit, where we swap roles and average.

We then repeatedly cross-fit, taking the mean or median over cross-fits in order to average over

the peculiariaties of a given split, and then take a mean or median over repeated cross-fits to

recover location and uncertainty estimates (Chernozhukov et al., 2018). The cross-fitting approach is

motivated by a desire to reduce the rate-requirements on nonparametric nuisance terms. We turn

next to a further refinement.

5.4 Higher-Order Accuracy and Computational Efficiency via Pivotal Statistics

The generation of contexts and evaluation of clauses is computationally intensive, while the downstream

steps–regressions or averaging over contexts–are much less costly. To connect these tradeoffs with the

sample size, we provide a result with two components. First, we show that when our estimator is

pivotal, the nuisance-estimation rate can be halved, from n−1/4 to n−1/8. We then bound the lead

bias, connecting the (expensive) number of generated contexts, nc, and the inexpensive number of

repeated cross-fits or bootstraps M = R or B. This repeated cross-fitting or bootstrapping strategy

can be used to reduce the number of contexts needed to guarantee the convergence rate necessary for

valid inference.

Assumption 3 (Pivotal Limit) Beyond Assumptions 1–3, suppose:

1. (Pivot) There exists a rate rn → ∞ and a known distribution G, such that

rn

(
θ̂n − θ0

) d−→ G,

and G involves no unknown parameters.

2. (Cramér’s Condition on G) The characteristic function of G is non-zero in a neighborhood

of the origin.
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Result 3 (Convergence Rates under Pivotality) Under Assumptions 1–3 and the Pivotal

Limit condition, suppose we estimate θ by either R repeated cross-fits or B bootstrap replicates, drawing

nc contexts per string. Then:

1. Second-order convergence via pivot. Pivotality reduces the nuisance convergence rate

from n−1/4 to n−1/8.

2. Uniform bias bound. The lead bias term can be controlled uniformly as

Bias = Op

(√
ln nc lnln M

nc M

)
,

where M = R (cross-fits) or M = B (bootstrap).

Therefore, driving the bias below n−γ (with γ = 1
4 in the standard semiparametric setting or

γ = 1
8 under pivotality), requires

(nc M)1+ϵ ≫ n2γ for some small ϵ > 0.

Proof. See Appendix A.4.

Interpretation and Computational Guidance. These results supply a unified theoretical rationale

for balancing the computational burden of costly context generation against virtually free inference

repetitions. Once contexts are drawn and scored, increasing the number of cross-fits R or bootstrap

replicates B incurs negligible overhead yet yields equivalent bias control. Under pivotality, the required

convergence rate halves—from n−1/4 to n−1/8—so that a moderate nc suffices when paired with a

sufficiently large R or B.

Crucially, these conclusions hold for any pivot, including a normal limit but also the F or chi-square,

making the approach broadly applicable in text settings where effect sizes are on a transformed

scale. In practical terms, inexpensive inference repetitions can improve the accuracy and help achieve

second-order accuracy under minimal computational expense.

6 The Two-Sample Problem via Context Augmentation

We apply context augmentation to test whether two groups of string-valued data differ in ways

captured by an LLM. We denote as cG clauses that could contain strings in group G ∈ {A, B}. The

clause function is then

Cl(s, c, E = G, M̂) = log Pr(s|cG),
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the log probability of observing string s in context cG, as scored by the model. We then construct the

string function as a two-vector, with elements given by the mean log probability in each group,

Str(s, E = {A, B}, M̂) =

EcA [log Pr(s|cA)]

EcB [log Pr(s|cB)]

 .

Define

θA = E(EcA [log Pr(s|cA)] − EcB [log Pr(s|cB)]|s ∈ A)

and θB similarly for group B. Our parameter is then

θ = θA − θB√
Var(θA − θB)

and we test the null hypothesis H0 : θ = 0.

Estimation. We estimate the test statistic using a repeated cross-fitting procedure designed to

eliminate self-referential bias. First, we randomly partition the data into two folds: one fold for

generating contexts and the other for conducting inference. For each string in the inference fold, we

evaluate its probability under the contexts in group A and group B generated from strings in the

other fold. We then implement a t-statistic, the plug-in estimate for our statistic given above.

This process is repeated in both directions (i.e., swapping the roles of the two folds), and the resulting

t-statistics are averaged and rescaled to correct for repeated sampling. To stabilize results and smooth

out any randomness from the fold assignment, we repeat this procedure and average over 25 repeated

cross-fits. For details, see Appendix B.

6.1 Empirical Demonstration

We evaluate our approach using synthetic data generated by GPT-4 across five categories (animals,

body parts, cities, food, plants). For each category, we sample 100 multi-word strings and generate 10

contexts per string using FLAN-T5-XXL.

Contexts are generated using a procedure summarized in Table 2. Each stage builds on the previous,

allowing us to build up contexts. The definition prompt enforces some similarity between the left and

right contexts. Constructing, and storing, left- and right-contexts separately makes evaluation easier,

making it simple to loop strings between the contexts on each side.

Results. We assess our method in two ways. First, for null calibration, strings from the semantic

category are randomly split into two groups. The resulting p-values are plotted in a QQ-plot (Fig. 1),

which adheres closely to the uniform(0,1) line, indicating valid Type I error control.
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Prompt Stage Description and Example Prompt
Definition Prompt the model to define the target string, generating a short, stan-

dalone explanation.
Example: Provide a clear and concise definition of the word
’leopard’.

Left Context (×nc) Using the generated definition, prompt the model to generate sentence
fragments that could logically precede the target string.
Example: Using the definition ’A large, spotted feline
predator.’, provide a sentence fragment that could
logically come before the word ’leopard’.

Right Context (per
left)

For each left-hand context, prompt the model to generate a continuation
that could follow the word, completing the sentence.
Example: Using the definition ’A large, spotted feline
predator.’, provide a sentence fragment that could
logically come after the phrase ’After stalking its prey,
the leopard’.

Final Template Assemble the final clause using a placeholder for substitution.
After stalking its prey, the «<STR»> pounced silently from
the grass.

Table 2: Context generation prompting pipeline used in simulation, structured to reflect the clause-building
process in the implementation code.

Second, for power analysis, we compute t-statistics from pairwise comparisons across different

categories. These are summarized in violin plots (Fig. 2). The results show strong and systematic

differences, with most test statistics exceeding conventional thresholds (|t| > 2), demonstrating that

the method is sensitive to meaningful semantic distinctions. Analytic variances closely matched

bootstrap estimates, supporting the robustness of the inference.

7 Regression via Context Mediation

We consider a regression setting where both the predictor sx and outcome sy are text. Our goal is

to measure whether observing sx increases the probability of subsequently observing sy. The effect

of an input string sx on an outcome string sy is assumed to occur through latent contexts, which

we generate using a large language model (LLM). These contexts, derived from the informative sx,

embed both the semantic and syntactic features of the text in a high-dimensional space. To assess how

the characteristics of sx influence sy, we compare the likelihood of sy when paired with the original

(informative) sx versus when sx is replaced by a non-informative variant s̃x. This transformation

highlights the contribution of sx’s semantic or structural content. Because there is inherent ambiguity

in removing information from text, we employ three baselines: masked, where each token in sx is

replaced by a placeholder, preserving token count and general syntactic structure; shuffled, where

words in sx are randomly permuted, thereby disrupting the original word order while retaining lexical
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Figure 1: QQ-plot of p-values from within-category comparisons. The adherence to the diagonal confirms
valid null calibration.

items; and jabberwocky, where content words are replaced with invented nonsense words, preserving

an approximate syntactic scaffold.

Let {(sx,i, sy,i)}n
i=1 be n observations of predictor–outcome text pairs. For each pair, the LLM

generates a set of latent contexts {cj;i}nc
j=1 by conditioning on the informative sx. Within the same

set of contexts {cj;i}, we compute the LLM-assessed probability of sy when the predictor is replaced

by each variant:

Pr(sy | cj;i, sinf
x ), Pr(sy | cj;i, smask

x ), Pr(sy | cj;i, sshuffle
x ), Pr(sy | cj;i, sjabberwocky

x ).

We define a clause function

Cl
(
sy, sν

x, cj;i, M
)

= log Pr(sy | sν
x, cj;i, M),

where ν ∈ {inf, mask, shuffle, jabberwocky} indexes the variant of sx used. By holding the context

fixed across variants, the differences in Cl between sinf
x and each noninformative version isolate the

impact of the textual features that have been modified. While not a formal causal mediation effect,

as any manipulation is model-based, an analogue of the indirect effect can be expressed as the ratio
Pr(sy | sinf

x , cj;i)
Pr

(
sy | s̃x, cj;i

) ,
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Figure 2: Violin plots of pairwise t-statistics for cross-category comparisons. Shaded regions represent non-
significant t-statistics (|t| < 2). The distributions highlight clear differentiation among semantic categories.

where s̃x may represent any of the non-informative variants. Comparing these ratios for the different

baselines quantifies the extent to which semantic content, word order, or lexical information contribute

to the model’s prediction of sy. This setup follows the general structure of mediation analysis (Pearl,

2012; Imai et al., 2010), where the generated contexts serve as mediators linking the predictor to the

outcome. By systematically altering the predictor while keeping the latent context fixed, we evaluate

how semantic and syntactic modifications alter the probability of the outcome string.

To formally aggregate these effects, we implement a regression model of the form

log Pr
(
sy,i | sinf

x,i, cj;i
)

=

β0 + β1 log Pr
(
sy,i | sshuffle

x,i , cj;i
)

+ β2 log Pr
(
sy,i | sjabberwocky

x,i , cj;i
)

+ β3 log Pr
(
sy,i | smask

x,i , cj;i
)

+ x⊤
i γ + z⊤

i b + εi.

(5)

where standard errors can then be clustered by string.
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7.1 Empirical Demonstration

For a simple illustration, we generated a dataset consisting of 10 text-based predictor–outcome pairs,

where predictors are movie-related phrases and outcomes either correspond to a semantically related

movie review statement or a randomly assigned geographical fact (placebo condition). Table ??

presents the first three strings in each group.

From each predictor, we generate the three different baselines: the syntactic baseline, generated by

scrambling word order while preserving vocabulary; the lexical baseline, which replaces each word

or token with a non-informative mask token; and the semantic baseline, which uses a jabberwocky

transformation to replace content words with nonsensical placeholders while retaining syntactic form.

For example, given the predictor “The soundtrack was mesmerizing,” the shuffled version might be

“was mesmerizing the soundtrack,” the masked version “<mask> <mask> <mask> <mask>,” and

the jabberwocky version “The ziggflorp was blarptastic.” We then estimate the model in Equation 7,

including random effects for each string.

The regression results, shown in Table 3, highlight the distinction between syntactic and semantic

contributions to LLM-based text prediction. In both the informative and placebo settings, the

shuffled predictor remains significant, confirming that syntactic coherence alone can contribute to

predictability—if a sentence is grammatically well-formed, another well-formed sentence is more likely

to follow, even in cases where the meaning is unrelated. However, a key distinction emerges with

the jabberwocky transformation: in the informative case, where the outcome remains within the

same semantic domain as the predictor, the jabberwocky effect is strongly positive and significant,

suggesting that even when lexical content is removed, the syntactic structure of the predictor still

carries meaningful information. In contrast, in the placebo setting, where the outcome is independent

of the predictor’s meaning, the jabberwocky transformation ceases to have any significant effect. This

divergence indicates that the informative regression captures a genuine semantic relationship, whereas

the placebo regression isolates only syntactic structure. The masked condition, which removes all

lexical content while preserving the general length and shape of the sentence, remains significant in

both cases, but with a much larger coefficient in the placebo setting, suggesting that when no real

information is available, the model defaults to prior expectations rather than making meaningful

inferences. Together, these findings confirm that while syntactic structure alone can generate statistical

dependencies between texts, only in the informative regression does the model identify an effect that

is truly semantic.
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Table 3: Regression Table

Informative Placebo
(1) (2)

Syntactic Baseline (shuffled) 0.399∗∗ 0.278∗∗∗

(0.197) (0.096)

Semantic Baseline (jabberwocky) 0.472∗∗∗ −0.020
(0.127) (0.230)

Masked Baseline (mask) 0.339∗ 0.723∗∗∗

(0.196) (0.194)

Constant 1.782∗ −0.158
(1.082) (0.959)

Fixed Effects Yes Yes
Observations 100 100
R2 0.867 0.860
F Statistic (df = 12; 87) 47.346∗∗∗ 44.402∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered at the string level.

8 Replication: Estimating the Effect of a Treatment Given Text-Valued
Outcomes

To evaluate the effectiveness of context augmentation for testing text-based treatment effects, we

replicate Experiment 3 from Egami et al. (2022). In that study, respondents are randomly assigned

to one of two prompts, each describing a 28-year-old man who illegally entered the U.S. with one of

two strings included. The treatment condition includes the sentence "The man has two prior prison

sentences (one for a violent crime) and has previously been deported," while the control condition

includes "The man has no prior criminal history and has never been imprisoned." Participants

respond to the question: "Should this person go to jail?" with free-text justifications. After removing

observations with no open-ended response, we have n = 1034 with 518 treated and 516 control.

In the original study, the authors split the data into estimation and inference sets, then fit a Structural

Topic Model (STM; Roberts et al., 2014) to the responses in the estimation set, using the treatment

variable as a predictor for topic prevalence. Topics identified in the estimation set were then applied

to the held-out inference set, with inference performed on 11 selected topics.

We apply our context augmentation method to the same data, preserving the train-test split. For

each response, we construct prompts based on the assigned treatment or control vignette, appending

the respondent’s justification to the base prompt followed by a question-answer format:
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You were asked, “Should this person go to jail?” You replied:

[response]. Why did you say this?

This composite prompt generates contexts evaluated through our context augmentation approach.

We compare context augmentation and STM on two dimensions: power and interpretability. Using

Hotelling’s T 2 statistic, adjusted for differences in degrees of freedom via the Wilson-Hilferty approxi-

mation, STM yields a test statistic of 38.8 on 10 degrees of freedom, whereas context augmentation

yields 104.6 on 1 degree of freedom. Transformed to a common z-scale, context augmentation achieves

8.22, compared to STM’s 3.95, indicating greater statistical precision.

This improved performance stems from context augmentation leveraging additional external linguistic

knowledge from a pre-trained LLM, enabling fine-grained analysis at the context level. STM, in

contrast, provides a thematic summary by aggregating word co-occurrences, offering insights into

broader themes rather than specific context-level contributions.

We present leave-one-out context analyses (Tables table C.1–table C.2) in Appendix C. Contexts shown

in Table table C.1, typically sympathetic or lenient, sharpen the observed treatment effect—omitting

them attenuates effect size. Conversely, the punitive contexts in Table table C.2 attenuate the effect,

as their omission increases the magnitude of the effect. These insights highlight precisely which

narrative framings influence the overall effect.

Table C.4 further refines this analysis by providing string-level effect estimates. The top strings

amplify the effect, depicting lenient or deportation-only responses (e.g., "They should simply be

deported...this is simply a minor violation"; t ≈ 10.58). Neutral strings near zero reflect ambivalent

or compromise positions ("I don’t even know the moral ethics of illegal entry anymore. . . exercise

caution"; t ≈ 0.00). The most negative strings depict the individual as a dangerous recidivist, strongly

attenuating the effect ("This person has clearly demonstrated a pattern of violence...negative effect

on national security"; t ≈ −12.33).

Note that in estimating an effect for each observed string, we are utilizing string-level counterfactual

estimates: we estimate the mean log-probability of each string under both its observed and coun-

terfactual treatment condition, using contexts as auxiliary information. This allows for string-level

predictions and analyses, and leaves a path open to future methods targeting causal estimands.

In this study, though, we restrict ourselves to descriptive and parametric parameters, in order to

first get these correct. In this spirit, we turn next to a setting from psychology where outcomes and

predictors are both textual, which is a new area of use in statistical inference.
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9 Regression Analysis: Interactive Alignment and Integrative Repair

To illustrate the utility of context augmentation in modeling textual interactions, we apply our method

to dialogue data from the DeliData corpus, a resource comprising multi-party deliberations designed

explicitly for studying group decision-making dynamics (Karadzhov et al., 2023). Our analytical

framework relies on the foundational psychological theories of Pickering and Garrod (Pickering and

Garrod, 2004, 2013), who characterize dialogue as a joint activity involving tightly coupled processes

of language production, comprehension, and prediction (ADD pickering and garrod 2007). Central to

their theory is the concept of interactive alignment, wherein interlocutors’ linguistic representations

spontaneously synchronize across lexical, syntactic, and semantic dimensions. Such alignment enables

efficient communication by minimizing cognitive demands, yet dialogues frequently encounter moments

of misalignment, necessitating integrative repair. Such repair manifests through reliance on predictable

linguistic structures, facilitating rapid restoration of common ground (Pickering and Garrod, 2004).

Empirical studies of deliberative dialogue across diverse contexts highlight the importance of alignment

and repair mechanisms. Research on police encounters (Rho et al., 2023), gender dynamics in

deliberative settings (Mendelberg et al., 2014), and semantic evolution in political discourse (Rodriguez

et al., 2023) underscores how linguistic alignment shapes conversational trajectories. Yet, these studies

often rely on human-coded interpretations of text, little or no attention paid to uncertainty estimation,

or embeddings models that cannot capture syntactic attributes of text. In contrast, our context

augmentation approach explicitly integrates linguistic variability into a formal inferential framework

by leveraging large language model (LLM)-generated contexts, thus addressing methodological gaps

noted by Le Mens et al. (2023).

Using our context augmentation regression, we find evidence of integrative repair within the DeliData,

manifested as increased reliance on predictable syntactic structures when confronted with a shift

either into our out of consensus within the pair. Specifically, we consider utterance transitions within

dialogues, modeling each subsequent utterance’s log-probability conditional on its predecessor. To

disentangle syntactic, semantic, and lexical contributions, we use baseline transformations: a syntactic

baseline (shuffled predictor), a semantic baseline (jabberwocky predictor), and a lexical baseline

(masked predictor), isolating separate linguistic dimensions. These transformations isolate linguistic

dimensions while preserving core textual properties.

The utterance, sy;i follows sx;i in the dialogue. We will also incorporate moderators that are measured

between the sx,i statement and the one immedately previous. After fitting a baseline with no
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moderator, we will consider three moderators: a time variable from 0 to 1 of how much of the dialogue

is complete; a consensus indicator for whether both speakers agreed prior to the predictor utterance;

and a shift indicator, for whether consensus was either established or lost immediately prior to the

predictor utterance. ous We take this shfit indicator as a measure of integrative repair, as there is a

shift in understanding in the previous period, and we expect alignment afterwards.

Using random effects for string (uobs(i)), a dialogue-level random effect and time trend (vdialogue(i) +

time × vdialogue(i)) and an effect for each speaker wspeaker(i), we estimate the following model.

log Pr(sy,i | sinf
x,i , cj;i)

= β0 + β1 log Pr(sy,i | sshuffle
x,i , cj;i) + β2 log Pr(sy,i | sjabberwocky

x,i , cj;i) + β3 log Pr(sy,i | smask
x,i , cj;i)

+ γ1consensusi + γ2shifti + γ3moderator ij

+ δ1(log Pr(sy,i | sshuffle
x,i , cj;i) × moderator ij) + δ2(log Pr(sy,i | sjabberwocky

x,i , cj;i) × moderator i)

+ δ3(log Pr(sy,i | smask
x,i , cj;i) × shifti)

+ uobs(i) + vdialogue(i) + time × vdialogue(i) + wspeaker(i) + ϵi. (6)

The results, summarized in Table 3, confirm several important theoretical predictions. First, all

three baselines significantly predict future utterances, underscoring the combined contribution of

syntactic, semantic, and lexical structures to linguistic alignment. Second, we observe no significant

linear trend across dialogue exchanges nor a simple direct effect of consensus state. Most crucially,

however, the interaction between consensus shifts and the syntactic baseline is strongly positive and

statistically significant (p < 0.01). This robust interaction indicates that shifts between consensus

and dissensus systematically amplify reliance on predictable syntactic forms. The interaction effects

remain symmetric, demonstrating comparable magnitudes whether shifting toward agreement or

disagreement, consistent with the integrative repair hypothesis of Pickering and Garrod (2004).

By contrast, semantic and lexical baselines reveal negligible interaction effects, indicating that integra-

tive repair primarily involves syntactic adjustment rather than semantic or lexical modification. The

asymmetry underscores that syntactic structure provides a crucial scaffolding mechanism facilitating

rapid realignment during conversational disruptions. These findings are robust under stringent model

specifications and clustering adjustments at the dialogue and speaker level.

Methodologically, our analysis offers significant innovations over existing approaches to text-based

inference. By explicitly modeling the latent variability in LLM-generated contexts, context aug-

mentation preserves statistical properties (asymptotic normality, unbiasedness) while accounting for
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linguistic complexity. Unlike fixed embedding methods (Rodriguez et al., 2023) or purely descriptive

semantic analyses (Le Mens et al., 2023), our approach provides a fully probabilistic framework

accommodating textual uncertainty. This innovation represents a major advancement in bridging

modern language modeling with classical empirical process theory.

Table 4: Regression Table

Dependent variable: Log Probability of Utterance given Previous Utterance

Moderator: None Time Consensus Shift Agree/Disagree
Syntactic Baseline 0.200∗∗∗ 0.200∗∗∗ 0.195∗∗∗ 0.189∗∗∗ 0.189∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Semantic Baseline 0.158∗∗∗ 0.158∗∗∗ 0.161∗∗∗ 0.160∗∗∗ 0.160∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.007)
Lexical Baseline 0.425∗∗∗ 0.425∗∗∗ 0.417∗∗∗ 0.423∗∗∗ 0.423∗∗∗

(0.015) (0.015) (0.017) (0.018) (0.018)
Moderator 0.108 0.514 0.390

(0.550) (0.393) (0.364)
Syntactic Baseline x Moderator −0.003 0.021 0.045∗∗∗

(0.019) (0.014) (0.013)
Semantic Baseline x Moderator 0.0003 −0.016 −0.008

(0.021) (0.015) (0.014)
Lexical Baseline x Moderator 0.001 0.040 0.006

(0.052) (0.037) (0.034)
Agree 0.838∗

(0.485)
Disagree −0.028

(0.471)
Syntactic Baseline x Agree 0.052∗∗∗

(0.017)
Semantic Baseline x Agree −0.014

(0.019)
Lexical Baseline x Agree 0.043

(0.046)
Syntactic Baseline x Disagree 0.037∗∗

(0.017)
Semantic Baseline x Disagree −0.003

(0.018)
Lexical Baseline x Disagree −0.028

(0.045)
Constant −1.391∗∗∗ −1.387∗∗∗ −1.504∗∗∗ −1.498∗∗∗ −1.498∗∗∗

(0.162) (0.164) (0.183) (0.189) (0.189)
Observations 7,390 7,390 7,390 7,390 7,390

Akaike Inf. Crit. 7,989.413 7,994.170 7,992.423 7,984.979 7,990.185
Bayesian Inf. Crit. 8,058.492 8,090.880 8,089.133 8,081.690 8,114.527

Note x ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Random effects included for dialogue, speaker, and utterance.

10 Discussion

Our aim is to connect LLMs to simple yet essential statistical models in a way that facilitates valid

statistical inference. With this in hand, a variety of different directions open. The key challenge we
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address is that text-valued data lack a natural probability structure, making standard inferential

techniques difficult to apply. Context augmentation provides a principled approach by leveraging

LLM-generated contexts as auxiliary information, which allows us to recover structured dependencies

from unstructured text. This framework permits estimation of quantities such as likelihood ratios,

regression coefficients, and other inferential targets using well-established statistical techniques.

A key technical challenge in implementing context augmentation lies in the engineering complexity of

working with large language models. Unlike classical parametric estimation, where the computational

burden is often minimal, generating context-augmented probabilities involves multiple layers of

modeling choices. The choice of prompts, temperature settings, number of contexts per observation,

and even minor variations in sampling strategies can influence the results. Importantly, our theoretical

framework remains robust across these variations—identification and estimation hold under different

prompt formulations and generation settings, provided that the required support and ignorability

assumptions remain valid. However, the computational cost of generating context samples remains

a nontrivial consideration. Unlike conventional parametric estimators, which can be computed

in seconds, generating sufficiently rich sets of contexts requires substantially more computational

effort. In practice, this creates a tradeoff between statistical precision and computational efficiency,

particularly in large-scale applications.

The two-sample and regression settings highlight deeper connections between context augmentation

and causal inference. In the two-sample problem, we effectively estimate a counterfactual likelihood

for each string—how likely it would have been under the other group’s contexts. This mirrors

standard counterfactual-based approaches in causal inference, where potential outcomes under different

treatments are estimated. Likewise, the regression framework exhibits an explicit mediation-like

structure: the LLM-generated contexts serve as mediators that link predictor and outcome text. The

core assumptions—support inclusion and weak ignorability—are foundational in causal inference,

reinforcing the deep conceptual link between context augmentation and causal modeling. While our

focus has been on inference rather than causal identification, these structural similarities suggest that

context augmentation could be extended to formal causal estimands in future work.

Future research can move in several directions. One immediate avenue is to extend this framework

to nonparametric settings, where context augmentation could be used in kernel methods, density

estimation, or clustering applications. Another is to apply context augmentation to causal inference

more explicitly, using LLMs to generate counterfactual text sequences or define text-based instrumental

variables. Further methodological refinements could involve Bayesian extensions, where priors over
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context distributions are incorporated directly into the estimation procedure. Finally, a deeper

integration with robust statistical methods, such as quantile-based estimators, could further enhance

the resilience of this approach to outliers and model misspecification.

11 Conclusion

This paper develops a framework for integrating LLMs with statistical inference via context aug-

mentation, a method that introduces model-generated contexts as auxiliary structures to enable

valid estimation. By leveraging generated contexts, we recover structured probabilistic relationships

between text observations while maintaining compatibility with standard inferential techniques. This

approach allows for hypothesis testing, regression analysis, and likelihood-based estimation directly

on text data, bridging contemporary deep learning with classical statistical methodology.

We establish theoretical conditions under which context augmentation leads to valid inference, showing

that under support inclusion and ignorability conditions, estimators exhibit asymptotic normality

with variance contributions from both text sampling and context generation. Empirical applications

to two-sample testing and text regression demonstrate the method’s utility in extracting structured

dependencies from unstructured text, with clear distinctions between syntactic and semantic effects.

More broadly, this work contributes to the growing intersection of statistical inference, natural language

processing, and causal analysis. By treating generated contexts as structured latent variables, context

augmentation offers a principled alternative to fixed embedding-based approaches, allowing for

more flexible, model-based inference on text-valued data. As language models continue to improve,

we anticipate that context augmentation will provide a foundation for increasingly sophisticated

applications in both social science and computational statistics.
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A Proofs

A.1 Identification

.

Proof 2 Overlap allows the auxiliary event-context distribution to inform the distribution of strings

under each event. Weak Ignorability ensures that the event-contexts isolate the effect of the event

itself when evaluated with the clause function. The result follows directly from injectivity.

A.2 Influence Function Decomposition

.

Assumption 1 allows us an estimating equation that is a sample average over i.i.d. strings and

their associated contexts. Assumption 2 guarantees that the estimating problem is well-posed.

Assumptions 3 and 4 provide the regularity conditions required for the functional delta method (see

van der Vaart, 1998a, Thm. 20.8). Assumption 5 ensures a uniform approximation in a neighborhood

of the true value. Together, these conditions yield the reported von Mises expansion.

A.3 Limit Theorem

.

The Lyapunov condition ensures asymptotic normality of the leading term of the von Mises expansion

from the previous result. The uniform continuous mapping theorem and Slutsky’s method justify

the limiting distribution. The result is directly comparable to the central limit theorem for regular

Z-estimators with nuisance functions (see van der Vaart, 1998a, Thm. 25.54 and 25.57).

A.4 Pivotality and Rate Result

Define the pivot

Tn = rn

(
θ̂n − θ0

)
.

Under Cramér’s condition it admits the first-order Edgeworth expansion

Pr{Tn ≤ t} = G(t) + 1
rn

A(t) g(t) + o
(
r−1

n

)
,

where G is a known limit law with density g and polynomial bias A. Hall (1992) shows that the

bootstrap—or, by the same argument, repeated cross-fitting—yields an identical expansion
∗

Pr{T ∗
n ≤ t} = G(t) + 1

rn
A(t) g(t) + op

(
r−1

n

)
.

Since G involves no unknowns, the O(r−1
n ) term cancels exactly, delivering the higher-order gain.
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Next, in our von Mises decomposition the only non-parametric remainder is the self-referential bias,

which factors into

∥F̂ − F∥∞︸ ︷︷ ︸
context error

and 1
M

M∑
m=1

R(m)

︸ ︷︷ ︸
self-referential

remainder

,

where each R(m) is i.i.d. mean-zero, finite-variance conditional on the fixed contexts. By Dvoret-

zky–Kiefer–Wolfowitz,

∥F̂ − F∥∞ = Op

(√
ln nc

nc

)
,

and by the Kolmogorov LIL,
1

M

M∑
m=1

R(m) = Op

(√
ln ln M

M

)
.

Hadamard differentiability plus our Lyapunov and equicontinuity conditions keep everything in L2(P ),

so that re-using the same contexts across folds maintains a finite variance. Because the two rates

multiply in the remainder, the total bias is

Op

(√
ln nc

nc

)
× Op

(√
ln ln M

M

)
= Op

(√
ln nc

nc

ln ln M
M

)
.

Equating this to o(n−γ) and absorbing the log factors into an ϵ > 0 gives

(nc M)1+ϵ ≫ n2γ ,

as reported in the text.

B Estimation

To avoid self-referential bias, we implement a repeated cross-fitting procedure. Let I1 and I2 denote

a random partition of the sample into two folds. For each string si ∈ I1, we evaluate it on out-of-fold

contexts generated by strings in I2, and vice versa. Specifically, define the string-level statistic as

Ŝtr
E;I2

i =

 1
|CA|

∑
c∈CA log Pr(si | c)

1
|CB |

∑
c∈CB log Pr(si | c)

 , for si ∈ I1,

where CG denotes the set of contexts generated from group G’s strings in fold I2. The difference-in-

means estimator for group A is then

θ̂A;I2 = 1
nA1

∑
i∈I1∩A

(
Ŝtr

E;I2

i,A − Ŝtr
E;I2

i,B

)
,

and similarly for group B using I2 ∩ B.

We then reverse the roles of the folds and average across directions:

θ̂avg = 1
2

(
θ̂A;I2 − θ̂B;I2 + θ̂A;I1 − θ̂B;I1

)
.
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To account for sampling variability, we compute a t-statistic in each direction and average:

t̂ =
√

2 · 1
2 (tI1→I2 + tI2→I1) ,

where tI1→I2 is the t-statistic computed by evaluating strings in I1 on contexts from I2, and vice

versa.

This estimator is repeated across multiple random splits, and final inference is based on the distribution

of t̂ across cross-fits.

C Context and String Two-Sample Analysis

Effect Context
0.0158 [ii] Usually illegal immigrants are refugees and we should make an effort to help and not condemn him. We

are in fact a land of immagrints. We «<STR»> [ii] Usually illegal immigrants are refugees and we should
make an effort to help and not condemn him. We are in fact a land of immagrints. We

0.0158 I do not know the law in this regard. «<STR»> i.
0.0152 They should simply be deported. They have never committed another crime, and their actions were not

violent. This is simply a minor violation «<STR»> They should simply be deported. They have never
committed another crime, and their actions were not violent. This is simply a minor violation

0.0152 i am not in favor of putting a citizen of a country illegally into prison for the crime of illegally entering for
food and work. i think we have a «<STR»> i am not in favor of putting a citizen of a country illegally into
prison for the crime of illegally entering for food and work. i think we have a

0.0144 I think he should be sent back to whatever country he came from, Why should the taxpayers have to support
him for whatever length of sentence he would be given? «<STR»> i.

0.0139 This person is a known criminal who has been convicted of violent crimes. In addition, they are in the
country illegally. They should definitely go to prison as it is likely they will «<STR»> They need to be sent
to prison for their crimes so it will stop them from breaking more laws

0.0137 No he should not go to prison because he doesn’t have a prior record and his only crime is entering the
United States illegally. He should be allowed to stay in the «<STR»> He should be allowed to stay in the
United States and try to make a life for himself as long as he follows the law

0.0137 I think he shouldn’t be sent to prison because A, he has no previous record and B, and more importantly, he
committed no serious (or violent) offense here. «<STR»> I think he shouldn’t be sent to prison because A,
he has no previous record and B, and more importantly, he committed no serious (or violent) offense here

0.0133 It depends on the nature of the violent action from before. Not enough information to decide. «<STR»>
Not enough information to decide.

0.0128 i think that once in the US, people should only be put in jail if they commit an offense that would send a US
citizen to jail. the reason the man came to the «<STR»> I think that once in the US, people should only be
put in jail if they commit an offense that would send a US citizen to jail. the reason the man came to the

Table C.1: Top Contexts that Sharpen the Effect
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Effect Context
-0.0251 I believe the offender should go to prison at minimum and should also be deported. The offender has broken

the law and illegally entered the United States. He also has a violent «<STR»> I believe the offender should
go to prison at minimum and should also be deported. The offender has broken the law and illegally entered
the United States. He also has a violent

-0.0186 This person should serve prison time because they have history of being deported and serving previous prison
sentences. This person it also a violent criminal and they should not be given any sort of lee «<STR»> This
person should serve prison time because they have history of being deported and serving previous prison
sentences. This person it also a violent criminal and they should not be given any sort of lee

-0.0185 This person should serve prison time because they have history of being deported and serving previous prison
sentences. This person it also a violent criminal and they should not be given any sort of lee «<STR»> This
person should serve prison time because they have history of being deported and serving previous prison
sentences. This person it also a violent criminal and they should not be given any sort of lee

-0.0171 The person should serve a prison sentence to pay for his crime. He clearly does not respect the laws of our
country so he should receive and serve a harsher sentence before deport «<STR»> The person should serve a
prison sentence to pay for his crime. He clearly does not respect the laws of our country so he should receive
and serve a harsher sentence before deport

-0.0170 I think this man should be deported. America should not incur the cost of food/clothes/shelter for a criminal.
Depending on the severity of the crime «<STR»> I think this man should be deported. America should not
incur the cost of food/clothes/shelter for a criminal. Depending on the severity of the crime

-0.0167 He should be jailed because obviously he cannot be trusted to follow the law since he has been previously
convicted of a violent crime and entered the country illegally. No one «<STR»> He should be jailed because
obviously he cannot be trusted to follow the law since he has been previously convicted of a violent crime
and entered the country illegally. No one

Table C.2: Top Contexts that Attenuate the Effect
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Effect String
10.5754 They should simply be deported. They have never committed another crime, and their actions were not

violent. This is simply a minor violation
9.5168 He should not go to prison, since he did not commit a crime which harmed another person or harmed property.

He doesn’t seem to be a danger to others or himself. The U.S. government should deport him back to his
home country.

9.0263 I think the man should be sent back to his country since he came here illegally. Since the man hasn’t been
incarcerated before I don’t think he should be sent to prison.

8.9130 He has been guilty of a violent crime. He has been to prison before.
8.4869 He tried to enter the country with no criminal record. Just because he is not a legal entrant does not mean

he should get prison time.
8.2690 This person was a repeat offender so we do not want him in our country. As long as he did not commit a

crime in our country we have nothing to convict him for and he should be deported.
8.1170 His only violation in this case is that he was crossing the border illegally. I don’t believe crossing the border

illegally is a case where prison should be the punishment, regardless of prior criminal record. And so it follows
that prison isn’t the proper punishment here.

8.0016 With no record, I think this person should be sent back to the country he came. I do not think he should be
penalised with any jail time.

-12.3304 This person has clearly demonstrated a pattern of violence and criminal activity. Allowing him into the
United States would have a negative effect on national security.

-11.3786 Because of his prior history of offenses, it shows that he should be placed in prison. Because he has a tendency
to be a violent criminal, it would be better if he were behind bars.

-9.7921 He should be sent to prison because he was convicted of a crime, and obviously deportation didn’t keep him
out of the US. Also, he is a violent criminal and should be incarcerated, not simply deported.

-9.7467 I believe he should be sent to prison. Mostly due to his violent past and the U.S government should crack
down on illegal immigrants committing crimes in our county. They should imprison him because if they
deport him his past shows he will come back and commit more violent crimes.

-9.3869 He has show a disregard for the laws of our nation and without serving a prison sentence will very likely just
come right back to the country upon his inevitable re-deportation. He should serve a minimum sentence of
1 year and upon completion should immediately be deported to his home country (preferably at his own
expense if possible). Without consequences for illegally entering the country, people will just come back again.

-9.1911 He should be sent to prison because he is obviously not learning his lesson. He has already served time in
prison and keeps coming back in this country.

-8.9385 This offender should be sent back to his home country. The U.S. government should not be responsible for
using tax payer money to support this man in prison. If he is caught again, he should be executed.

-8.9186 He’s a prior offender who should have learned his lesson by now. Having been convicted of a violent crime
he’s clearly demonstrated that he’s a threat to society. After he serves his sentence he should be deported
back to his home country.

Table C.3: String Level Effect Estimates (Positive = Largest Treatment Effect)
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group Effect Size string
Top 7 10.575 They should simply be deported. They have never committed another crime, and their

actions were not violent. This is simply a minor violation
Top 7 9.517 He should not go to prison, since he did not commit a crime which harmed another person or

harmed property. He doesn’t seem to be a danger to others or himself. The U.S. government
should deport him back to his home country.

Top 7 9.026 I think the man should be sent back to his country since he came here illegally. Since the
man hasn’t been incarcerated before I don’t think he should be sent to prison.

Top 7 8.913 He has been guilty of a violent crime. He has been to prison before.
Top 7 8.487 He tried to enter the country with no criminal record. Just because he is not a legal entrant

does not mean he should get prison time.
Top 7 8.269 This person was a repeat offender so we do not want him in our country. As long as he did

not commit a crime in our country we have nothing to convict him for and he should be
deported.

Top 7 8.117 His only violation in this case is that he was crossing the border illegally. I don’t believe
crossing the border illegally is a case where prison should be the punishment, regardless of
prior criminal record. And so it follows that prison isn’t the proper punishment here.

Neutral 7 0.004 I don’t even know the moral ethics of illegal entry anymore. The government should let
him in but if the sentences he had prior to this were very severe then they should exercise
caution.

Neutral 7 -0.006 I don’t believe that someone trying to get into the country looking for opportunity should
be punished especially if they have no criminal history. I believe they should be fined and be
given information about a path to legal citizenship.

Neutral 7 0.007 get ride of them, send them back to their own country and let them puttheir own people in
harms way

Neutral 7 -0.007 He should be made to return to his own country because he came in illegally. It’s not our
responsibility to pay for him in prison

Neutral 7 -0.011 He should be sent back to his country of origin. Since it is his first time, that is all the action
that needs to be taken.

Neutral 7 0.012 I think that he should have to pay a fine. The immigration system in the US is now setting
up immigrants to fail. They make it very difficult for people to come here legally to work.

Neutral 7 0.013 He should be sent back to his native country. He should not be imprisioned on the tax payers
dime in the country he illegally entered.

Bottom 7 -12.330 This person has clearly demonstrated a pattern of violence and criminal activity. Allowing
him into the United States would have a negative effect on national security.

Bottom 7 -11.379 Because of his prior history of offenses, it shows that he should be placed in prison. Because
he has a tendency to be a violent criminal, it would be better if he were behind bars.

Bottom 7 -9.792 He should be sent to prison because he was convicted of a crime, and obviously deportation
didn’t keep him out of the US. Also, he is a violent criminal and should be incarcerated, not
simply deported.

Bottom 7 -9.747 I believe he should be sent to prison. Mostly due to his violent past and the U.S government
should crack down on illegal immigrants committing crimes in our county. They should
imprison him because if they deport him his past shows he will come back and commit more
violent crimes.

Bottom 7 -9.387 He has show a disregard for the laws of our nation and without serving a prison sentence will
very likely just come right back to the country upon his inevitable re-deportation. He should
serve a minimum sentence of 1 year and upon completion should immediately be deported
to his home country (preferably at his own expense if possible). Without consequences for
illegally entering the country, people will just come back again.

Bottom 7 -9.191 He should be sent to prison because he is obviously not learning his lesson. He has already
served time in prison and keeps coming back in this country.

Bottom 7 -8.938 This offender should be sent back to his home country. The U.S. government should not be
responsible for using tax payer money to support this man in prison. If he is caught again,
he should be executed.

Table C.4: String-level effects: Top, Neutral, and Bottom 7

34


	Introduction
	Intuition Behind Context Augmentation
	Literature Review and Motivation
	Setup and Notation
	Data and Variables
	The Estimand
	The Estimate

	Identification and Estimation
	Identification
	Estimation and Asymptotics
	Setup and Influence Function Decomposition
	Higher-Order Accuracy and Computational Efficiency via Pivotal Statistics

	The Two-Sample Problem via Context Augmentation
	Empirical Demonstration

	Regression via Context Mediation
	Empirical Demonstration

	Replication: Estimating the Effect of a Treatment Given Text-Valued Outcomes
	Regression Analysis: Interactive Alignment and Integrative Repair
	Discussion
	Conclusion
	Proofs
	Identification
	Influence Function Decomposition
	Limit Theorem
	Pivotality and Rate Result

	Estimation
	Context and String Two-Sample Analysis

